Build your students’ knowledge and understanding so that they can confidently reason, interpret, communicate mathematically and apply their mathematical skills to solve problems within mathematics and wider contexts; with resources developed specifically for the OCR GCSE 2015 specification by mathematics subject specialists experienced in teaching and examining GCSE.

We are working with OCR to get these resources endorsed:

- **Mastering Mathematics for OCR GCSE Foundation 1**
 - ISBN: 9781471840012
 - June 2015
 - Price: £17.99

- **Mastering Mathematics for OCR GCSE Foundation 2/ Higher 1**
 - ISBN: 9781471840029
 - May 2015
 - Price: £17.99

- **Mastering Mathematics for OCR GCSE Higher 2**
 - ISBN: 9781471840036
 - July 2015
 - Price: £17.99

Visit www.hoddereducation.co.uk/OCR-GCSE-MasteringMathematics to pre-order or to sign up for Inspection Copies.

Also available:

Mastering Mathematics 11-16 Dynamic Learning for OCR GCSE

Dynamic Learning is an online subscription that supports teachers and students with high quality content and unique tools. Our Mastering Mathematics Dynamic Learning (11-16 KS3 & GCSE) focuses on strands of learning within the new National Curriculum to improve progression throughout secondary mathematics, offering a seamless five year progression.

9781471844713 Prices from £1,040.00 + VAT

Sign up for a free 30 day trial of Dynamic Learning at www.hoddereducation.co.uk/dynamiclearning
Contents

NUMBER

Strand 1 Calculating
Units 1–9 Moving on

Strand 2 Using our number system
Units 1–6 Moving on
Unit 7 Calculate with standard form

Strand 3 Accuracy
Units 1–6 Moving on
Unit 7 Limits of accuracy

Strand 4 Fractions
Units 1–6 Moving on

Strand 5 Percentages
Units 1–5 Moving on
Unit 6 Reverse percentages
Unit 7 Repeated percentage increase or decrease

Strand 6 Ratio and proportion
Units 1–3 Moving on
Unit 4 The constant of proportionality
Unit 5 Working with inversely proportional quantities

Strand 7 Number properties
Units 1–3 Moving on
Unit 4 Index notation
Unit 5 Prime factorisation
Unit 6 Roots and integer indices

ALGEBRA

Strand 1 Starting algebra
Units 1–6 Moving on
Unit 7 Working with more complex equations
Unit 8 Solving equations with brackets
Unit 9 Simplifying harder expressions
Unit 10 Using complex formulae
Unit 11 Identities

Also available:
Mastering Mathematics for OCR GCSE Dynamic Learning (11-16 KS3 & GCSE)
Dynamic Learning is an online subscription that supports teachers and students with high quality content and unique tools. Our Mastering Mathematics Dynamic Learning (11-16 KS3 & GCSE) focuses on strands of learning within the new National Curriculum to improve progression throughout secondary Mathematics, offering a seamless five year progression.

9781471844713 Prices from £1,040.00 + VAT
Sign up for a free 30 day trial of Dynamic Learning at www.hoddereducation.co.uk/dynamiclearning

Build your students' knowledge and understanding so that they can confidently reason, interpret, communicate mathematically and apply their mathematical skills to solve problems within mathematics and wider contexts; with resources developed specifically for the OCR GCSE 2015 specification by mathematics subject specialists experienced in teaching and examining GCSE.

We are working with OCR to get these resources endorsed:
Mastering Mathematics for OCR GCSE Foundation 1
9781471840012 June 2015 £17.99
Mastering Mathematics for OCR GCSE Foundation 2/ Higher 1
9781471840029 May 2015 £17.99
Mastering Mathematics for OCR GCSE Higher 2
9781471840036 July 2015 £17.99
Visit www.hoddereducation.co.uk/OCR-GCSE-MasteringMathematics to pre order or to sign up for Inspection Copies.
Strand 2 Sequences
Units 1–4 Moving on
Unit 5 Quadratic sequences
Unit 6 Other types of sequence

Strand 3 Functions and graphs
Units 1–3 Moving on
Unit 4 Plotting quadratic and cubic graphs
Unit 5 Finding equations of lines
Unit 6 Rates of change in context
Unit 7 Recognising and sketching functions

Strand 4 Algebraic methods
Unit 1 Moving on
Unit 2 Linear inequalities
Unit 3 Solve pairs of equations by substitution
Unit 4 Solve simultaneous equations using elimination
Unit 5 Using graphs to solve simultaneous equations

Strand 5 Properties of non-linear graphs
Unit 1 Quadratic functions

Strand 6 Working with quadratics
Unit 1 Factorising quadratics
Unit 2 Solve equations by factorising

GEOMETRY AND MEASURES

Strand 1 Units and scales
Units 1–10 Moving on
Unit 11 Converting compound units

Strand 2 Properties of shapes
Units 1–8 Moving on
Unit 9 Congruent triangles
Unit 10 Conjecture and proof

Strand 3 Measuring shapes
Units 1–4 Moving on
Unit 5 Pythagoras’ theorem
Unit 6 Arcs and sectors
Strand 4 Construction
Units 1–2 Moving on
Unit 3 Construction with a pair of compasses
Unit 4 Loci
Unit 5 Constructing plans and elevations

Strand 5 Transformations
Units 1–5 Moving on
Unit 6 Enlargement
Unit 7 Similarity
Unit 8 Trigonometry
Unit 9 Trigonometry for special angles
Unit 10 Finding centres of rotation

Strand 6 Three-dimensional shapes
Units 1–6 Moving on
Unit 7 Surface area and volume of 3D shapes

Strand 7 Vectors
Unit 1 Vectors
Unit 2 Multiplying by a scalar

STATISTICS AND PROBABILITY

Strand 1 Statistical measures
Units 1–4 Moving on

Strand 2 Statistical diagrams
Units 1–4 Moving on
Unit 5 Displaying grouped data
Unit 6 Scatter graphs
Unit 7 Using lines of best fit

Strand 3 Collecting data
Unit 1 Methods of collecting data
Unit 2 Designing questionnaires
Unit 3 Sampling

Strand 4 Probability
Units 1–3 Moving on
Unit 4 Estimating probability
Unit 5 The addition rule
Unit 6 The multiplication rule
Acknowledgements

Photo credits:

p. 4 © Getty Images / iStockphoto / Thinkstock; p. 6 © Caitlin Seymour; p. 8 © Jürgen Fälchle – Fotolia

Although every effort has been made to ensure that website addresses are correct at time of going to press, Hodder Education cannot be held responsible for the content of any website mentioned in this book. It is sometimes possible to find a relocated web page by typing in the address of the home page for a website in the URL window of your browser.

Hachette UK’s policy is to use papers that are natural, renewable and recyclable products and made from wood grown in sustainable forests. The logging and manufacturing processes are expected to conform to the environmental regulations of the country of origin.

Orders: please contact Bookpoint Ltd, 130 Milton Park, Abingdon, Oxon OX14 4SB. Telephone: +44 (0)1235 827720. Fax: +44 (0)1235 400454. Lines are open 9.00a.m.–5.00p.m., Monday to Saturday, with a 24-hour message answering service. Visit our website at www.hoddereducation.co.uk

First published in 2015 by
Hodder Education,
An Hachette UK Company
338 Euston Road
London NW1 3BH

Impression number 5 4 3 2 1
Year 2019 2018 2017 2016 2015

All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or held within any information storage and retrieval system, without permission in writing from the publisher or under licence from the Copyright Licensing Agency Limited. Further details of such licences (for reprographic reproduction) may be obtained from the Copyright Licensing Agency Limited, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

Cover photo © Spectral-Design – Fotolia

Illustrations by Integra

Typeset in ITC Avant Garde Gothic Std Book 10/12 by Integra Software Services Pvt. Ltd., Pondicherry, India

Printed in Italy

A catalogue record for this title is available from the British Library

ISBN 9781471840029
Strand 2 Using our number system

- Unit 1 Band c: Working with whole numbers
- Unit 2 Band d: Understanding decimals
- Unit 4 Band e: Understanding negative numbers
- Unit 3 Band e: Multiplying and dividing decimals by 10, 100, etc.
- Unit 5 Band e: Using the number system effectively
- Foundation 1
- Unit 6 Band h: Understanding standard form
- Foundation 1
- Unit 7 Band h: Calculate with standard form
- Higher 2
Outside the maths classroom

Measuring space

How many stars are there in our galaxy?

Toolbox

Adding or subtracting numbers in standard form is straightforward if the multiple of ten is the same.

Five million added to three million is eight million, which can be written as $5 \times 10^6 + 3 \times 10^6 = 8 \times 10^6$.

If the powers of ten are not equal rewrite them so they are.

Then the same strategy can be used.

$$6 \times 10^9 + 5 \times 10^8 = 60 \times 10^8 + 5 \times 10^8$$

$$= 65 \times 10^8$$

$$= 6.5 \times 10^9.$$

When multiplying (or dividing) two numbers in standard form, work with each part of the number separately.

$$5 \times 10^7 \times 3 \times 10^4 = 5 \times 3 \times 10^7 \times 10^3$$

$$= 15 \times 10^{10}$$

$$= 1.5 \times 10^{11}.$$

Note: This is not standard form.

The number must be between 1 and 10.
Example – Multiplying large and small numbers

A grain of sand weighs around 3.5×10^{-10} kg.
It is thought that there are around 7.5×10^{18} grains of sand on the Earth.
Use the figures above to calculate the weight of all of the sand on Earth. Give your answer in
standard form.

Solution

$$3.5 \times 10^{-10} \times 7.5 \times 10^{18} = 26.25 \times 10^8$$

$$= 2.625 \times 10^9 \text{kg}$$

Example – Subtraction and division of small numbers

A loaf of bread contains 5×10^{-3} kg of yeast and 1×10^{-2} kg of salt.

a How much do the salt and yeast weigh in total?

b How much greater is the weight of the salt than the yeast in kg?

c How many times is the weight of salt greater than the yeast?

Solution

a $1 \times 10^{-2} + 5 \times 10^{-3} = 10 \times 10^{-3} + 5 \times 10^{-3}$

$= 1.5 \times 10^{-2}$ kg

b $1 \times 10^{-2} - 5 \times 10^{-3} = 10 \times 10^{-3} - 5 \times 10^{-3}$

$= 5 \times 10^{-3}$ kg

The salt weighs 5×10^{-3} kg more than the yeast.

c $\frac{\text{weight of salt}}{\text{weight of yeast}} = \frac{1 \times 10^{-2}}{5 \times 10^{-3}}$

$= 0.2 \times 10^{-2-(-3)}$

$= 0.2 \times 10^{1}$

$= 2 \times 10^0$

There is twice as much salt as yeast.

Do the questions in this unit without a calculator first. Use your calculator to check your answers.

Practising skills

1 Work out the values of the following, giving your answers in standard form.

a $3.2 \times 10^5 + 4.6 \times 10^5$

d $6.4 \times 10^3 + 2000$

b $6.8 \times 10^{-2} - 5.1 \times 10^{-2}$

e $1.8 \times 10^{-3} + 2.2 \times 10^{-3}$

f $6.4 \times 10^{-2} - 0.033$

c $8000 + 700$

g $7.2 \times 10^5 + 4.6 \times 10^5$

2 Work out the following, giving your answers in standard form.

a $7.2 \times 10^5 + 4.6 \times 10^5$

d $7.2 \times 10^5 - 4.6 \times 10^5$

b $7.2 \times 10^5 + 4.6 \times 10^4$

e $7.2 \times 10^6 - 4.6 \times 10^5$

f $7.2 \times 10^5 - 4.6 \times 10^6$

c $7.2 \times 10^5 + 4.6 \times 10^6$

f $7.2 \times 10^5 - 4.6 \times 10^6$
Strand 2 Using our number system

3. Without using a calculator work out the value of the following. Give your answers in standard form.
 a. \(3 \times 10^5 \times 2 \times 10^7\)
 b. \(2 \times 10^3 \times 4 \times 10^6\)
 c. \(2 \times 10^5 \times 5 \times 10^2\)
 d. \(3 \times 10^{-5} \times 3 \times 10^7\)
 e. \(5 \times 10^{-7} \times 2 \times 10^5\)
 f. \(9 \times 10^{-6} \times 7 \times 10^{-4}\)

4. Without using a calculator work out the value of these calculations.
 a. \(6 \times 10^5 \div 2 \times 10^3\)
 b. \(8 \times 10^9 \div 4 \times 10^8\)
 c. \(6 \times 10^5 \div 2 \times 10^3\)
 d. \(3 \times 10^7 \div 2 \times 10^3\)
 e. \(2 \times 10^5 \div 4 \times 10^3\)
 f. \(2 \times 10^6 \div 8 \times 10^8\)

5. Using standard form, write down a number that is between:
 a. \(6 \times 10^5\) and \(6 \times 10^4\)
 b. \(6 \times 10^{-3}\) and \(6 \times 10^{-2}\)
 c. \(7.1 \times 10^2\) and \(7.1 \times 10^3\)
 d. \(7.1 \times 10^{-6}\) and \(7.1 \times 10^{-7}\)

6. Coley says:

 When you’re multiplying numbers in standard form you have to multiply the two numbers at the front together and write down what that comes to, then write ‘\(\times 10\)’ and finally add the two powers together and write that down.

 Explain why Coley’s method won’t always give the correct answer in standard form.

Developing fluency

1. Work out the following, giving your answers in standard form.
 a. \(3.204 \times 10^2 + 4 \times 10^{-1}\)
 b. \(3.204 \times 10^2 - 4 \times 10^{-1}\)
 c. \(3.204 \times 10^2 \times 4 \times 10^{-1}\)
 d. \(3.204 \times 10^2 \div 4 \times 10^{-1}\)

2. The speed of light is \(3 \times 10^8\) metres per second and there are roughly \(3 \times 10^7\) seconds in a year. A light year is the distance travelled by light in one year. Approximately how many metres is a light year? Give your answer in standard form.

3. The masses of some of the planets in our Solar System are:
 - Jupiter: \(1.9 \times 10^{27}\) kg
 - Saturn: \(5.7 \times 10^{26}\) kg
 - Mercury: \(3.3 \times 10^{23}\) kg
 - Earth: \(6 \times 10^{24}\) kg.
 a. Place the planets in order of mass.
 b. How many times greater than the mass of the Earth is the mass of Jupiter?
 c. How many times greater than the mass of Mercury is the mass of Jupiter?
 d. How many time greater than the mass of Mercury is the mass of the Earth?
Some approximate masses are:
caffeine molecule 3.2×10^{-25} kg
eyebrow hair 7×10^{-8} kg
average human cell 1×10^{-12} kg
water molecule 3×10^{-26} kg.

a How many water molecules weigh the same as an eyebrow hair?
b How many water molecules weigh the same as one caffeine molecule?
c How many times greater than the mass of a water molecule is the mass of an eyebrow hair?

A hydrogen atom weighs 1.67×10^{-27} kg.
An oxygen atom weighs 2.67×10^{-26} kg.
What is the mass of a molecule of water?

Problem solving

1. The mass of a spacecraft is 7.8×10^4 kg.
The spacecraft is carrying equipment with a total mass of 2.4×10^3 kg.
The spacecraft docks with a space station.
The mass of the space station is 4.62×10^5 kg.
The commander of the space station does not want the total mass on docking to be greater than 5.43×10^5 kg.
Is the total mass within this limit?

2. Jenny is making a scale model of the Solar System.
She wants the distance from Earth to Saturn to be 20 cm on her scale model.
The real distance from the Earth to Saturn is 1.25×10^9 kilometres.
a Find the scale of the model in the form $1:n$ where n is written in standard form.
Jenny wants to put the position of a spacecraft on the scale model.
The real distance of the spacecraft from Earth is 8.5×10^8 kilometres, correct to 2 significant figures.
b Work out the distance of the spacecraft from Earth on the scale model.

3. Karim is trying to find out the thickness of a piece of paper.
He has a box of paper which contains 3000 sheets of paper positioned on top of each other.
The height of the paper is 0.3 m.
a Work out the thickness of each sheet of paper.
Give your answer in metres, in standard form.
Karim also wants to know the weight of each sheet of paper.
He weighs the box containing the paper, then he weighs the box when it is empty.
The weight of the box and paper is 54 kg.
The weight of the empty box is 500 g.
b Work out the weight of each piece of paper.
Give your answer in kilograms, in standard form.
Elaine is estimating how far away a thunderstorm is from her home.

The speed of sound is estimated at 3.3×10^2 metres per second.
The speed of light is estimated at 3.0×10^8 metres per second.

a) The thunderstorm is 6 km away and Elaine sees a flash of lightning.

She hears the clap of thunder x seconds later.

Work out the value of x.

Give your answer to the nearest whole number.

b) The length of time between seeing the next flash of lightning and hearing the clap of thunder is 3 seconds.

How far away is the thunderstorm now?

State any assumptions that you have made.

Lynn is carrying out a survey on the living space per person in five different countries.
The table shows the information that she has collected.

<table>
<thead>
<tr>
<th>Country</th>
<th>Area (in km²)</th>
<th>Population</th>
<th>Area (in km²) per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>3.0×10^6</td>
<td>2.2×10^7</td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>8.5×10^6</td>
<td>2.0×10^8</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>9.6×10^6</td>
<td>1.4×10^9</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>3.6×10^5</td>
<td>8.3×10^7</td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>2.4×10^5</td>
<td>6.4×10^7</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>9.8×10^6</td>
<td>3.2×10^8</td>
<td></td>
</tr>
</tbody>
</table>

She wants to find out which country has the greatest land area per person.
Complete the table and compare the five countries.

Rod is a keen physicist interested in the wavelengths of sound waves.

Rod wants to find the difference between the wavelength of his favourite radio station to the wavelength of his dad’s favourite radio station.

Rod listens to FM Capital Radio which has a frequency of 102 MHz.
Rod’s dad listens to AM Radio 5 Live which has a frequency of 909 kHz.

$1 \text{ MHz} = 10^6 \text{ waves per second}$.$1 \text{ kHz} = 10^3 \text{ waves per second}$.

To find the wavelength (in m), Rod uses the formula:

\[
\text{wavelength} = \frac{3 \times 10^8}{\text{frequency (in waves per second)}}
\]

Work out the difference between the wavelength of Rod’s favourite radio station and the wavelength of his dad’s favourite radio station.
Reviewing skills

1. Work out
 a. $8.48 \times 10^4 + 8.4 \times 10^3 - 3 \times 10^2$
 Give your answer in standard form.
 b. Write the following as ordinary numbers.
 i. 8.48×10^4
 ii. 8.4×10^3
 iii. 3×10^2
 c. Use your answers to part b to check your answer to part a.

2. Work out the following, giving your answers in standard form.
 a. $6000 \times 1.5 \times 10^9$
 b. $1.6 \times 10^{-4} \times 2 \times 10^{-3}$
 c. $2.3 \times 10^6 + 3 \text{ million}$
 d. $0.0052 - 3.2 \times 10^{-3}$
 e. $7.6 \times 10^2 \times 2 \times 10^{-1}$
 f. $7.6 \times 10^2 \div 2 \times 10^{-1}$

3. A human body contains roughly 1×10^{12} bacteria and there are about 7×10^9 people on the planet.
 How many bacteria are there in total within all of the people?
This book is supported by Dynamic Learning – the online subscription service that helps make teaching and learning easier.

Dynamic Learning supports teachers and students with high quality content and unique tools. Dynamic Learning incorporates elements that all work together to give you the ultimate classroom and homework resource.

Teaching and Learning titles include interactive resources, lesson planning tools, self-marking tests and assessment. Teachers can:
- use the Lesson Builder to plan and deliver outstanding lessons
- share lessons and resources with students and colleagues
- track students progress with Tests and Assessments

Teachers can also combine their own trusted resources alongside those from Mastering Mathematics for OCR GCSE which has a whole host of informative and interactive resources including:
- hundreds of activities, exam-style questions and worked solutions
- online questions for each topic that can be set as homework and are automatically marked
- classroom-ready teaching and learning resources that focus on the new assessment objectives and are organised by topic, allowing you to use them alongside any Scheme of Work

Mastering Mathematics for OCR GCSE is available as a Whiteboard eTextbook which is an online interactive version of the printed textbook that enables teachers to:
- display interactive pages to their class
- add notes and highlight areas
- add double-page spreads into lesson plans

Additionally the Student eTextbook of Mastering Mathematics for OCR GCSE is a downloadable version of the printed textbook that teachers can assign to students so they can:
- download and view on any device or browser
- add, edit and synchronise notes across two devices
- access their personal copy on the move

To find out more and sign up for free trials visit: www.hoddereducation.co.uk/dynamiclearning
Build your students’ knowledge and understanding so that they can confidently reason, interpret, communicate mathematically and apply their mathematical skills to solve problems within mathematics and wider contexts.

- Supports you and your students through the new specifications, with topic explanations and new exam-style questions
- Measure progress and assess learning throughout the course with graduated exercises and worked examples
- Enables students to identify the appropriate remediation or extension steps they need in order to make the best progress, through easy to follow progression strands

Series Editor: Roger Porkess is a highly experienced author who held the position of MEI Chief Executive for 20 years.

ALSO AVAILABLE

Dynamic Learning

This book is supported by Dynamic Learning – the online subscription service that helps make teaching and learning easier. Dynamic Learning provides unique tools and content for:
- front-of-class teaching
- streamlining planning and sharing lessons
- focused and flexible assessment preparation
- independent, flexible student study

Sign up for a free 30 day trial – visit: www.hoddereducation.co.uk/dynamiclearning

Textbook subject to change based on Ofqual feedback